
NYC Mesh maintains authoritative and recursive resolvers that are hosted within NYC Mesh. The
authoritative server is primarily used to resolve records about NYC Mesh while the recursive
resolver resolves queries from NYC Mesh.

Authoritative Shared Private (Recursive)
Resolver

Would resolve a query for _ wiki.mesh.nycmesh.net wikipedia.org

Resolves queries sent by _ DNS servers from the internet
resolving queries Members within NYC Mesh

Responds to queries about _ NYC Mesh Anything

Available from _ The internet and inside the mesh Inside the mesh

Responds to _ queries Standard DNS Standard DNS and DoH

NYC Mesh's internal DNS servers include a "fake" internal-only top-level domain (TLD) .mesh (dot
mesh) which is primarily used by volunteers and enthusiasts to shorten URLs within the mesh.
Special configuration is needed to allow Mikrotik devices to consistently resolve .mesh TLD records
within the mesh.

DNS - Beta
This page describes systems which have not yet been deployed to production (SN 1{0,1})
and configurations that can be made after the current DNS servers are retired (DoH
@10.10.10.10).

DNS Services
You are welcome to, but are not required to use 10.10.10.10 and 10.10.10.11 for your
DNS servers within NYC Mesh

Types of DNS Servers

.mesh

https://en.wikipedia.org/wiki/DNS_over_HTTPS
https://en.wikipedia.org/wiki/Top-level_domain

The .mesh zone is also externally available via .mesh.nycmesh.net .

NYC Mesh does not log who makes what DNS queries or which records/domains are queried.

General statistics are kept about the total number of queries made and how long it takes the
servers to respond to them for the sole purpose of continual operation of the DNS servers.

Using the NYC Mesh shared private resolver means that less overall DNS queries are made outside
of the mesh. For example, if 10 users query for example.com before the record's TTL expires, the
server only needs to resolve the record 1 time, and the cached copy is used for the remaining 9
times. This also happens to make it difficult for a passive eavesdropper outside of the mesh to
know who requested records for popular domains.

NYC Mesh also resolves encrypted queries made via DoH for added privacy and security.

DNS over HTTPS (DoH) is supported by the recursive resolvers hosted by NYC Mesh. Following
standard practice, DoH traffic is terminated at the NYC Mesh recursive resolvers, which then
makes one or more standard DNS queries on the internet, to then pass the response back to the
requester via HTTPS. The privacy/security benefit of using DoH is that a passive or active network
attacker within the mesh is not able to eavesdrop on DNS queries between the system that made
the DoH query and the DNS server hosted by NYC Mesh.

DoH is supported by Mikrotik RouterOS devices, though it is not enabled by default.

NYC Mesh does not filter the content of DNS requests.

Infrastructure for the NYC Mesh internal DNS servers is managed via Terraform and Ansible and
deployed via GitHub Actions in the nycmeshnet/nycmesh-dns repository on GitHub. The same
repository also contains the configuration for NYC Mesh organization domains which are not hosted
within the mesh.

For redundancy, DNS servers are hosted at multiple locations within NYC Mesh. The recursive
resolvers used by NYC Mesh members are available at the same IP addresses (anycast). Member's
queries are routed to the nearest server as determined by

Privacy

DoH

Censorship

DNS Infrastructure

https://en.wikipedia.org/wiki/Time_to_live#DNS_records
https://en.wikipedia.org/wiki/DNS_over_HTTPS
https://help.mikrotik.com/docs/spaces/ROS/pages/37748767/DNS#DNS-DNSoverHTTPS(DoH)
https://en.wikipedia.org/wiki/Terraform_(software)
https://en.wikipedia.org/wiki/Ansible_(software)
https://github.com/features/actions
https://github.com/nycmeshnet/nycmesh-dns
https://github.com/nycmeshnet/nycmesh-dns/tree/master/sld
https://wiki.nycmesh.net/link/185#bkmrk-page-title
https://en.wikipedia.org/wiki/Internet_Protocol#Addressing_methods

OSPF.

SN1 (legacy, to be removed)
SN3
SN10 - Soon?
SN11 - Soon

Server (Authoritative) Knot DNS

Server (Recursive) Knot Resolver

Routing FRR

Monitoring InfluxDB + Grafana + DataDog + Uptime Kuma

Log Aggregation DataDog

Deployment GitHub Actions

IaC Terraform + Ansible

Virtualization Proxmox (KVM)

Operating System Debian

Changes to the infrastructure and server configuration for the NYC Mesh DNS servers are managed
via Infrastructure-as-Code(IaC) in the nycmeshnet/nycmesh-dns repository. Changes to the
Terraform and Ansible are automatically deployed after they are approved by specific NYC Mesh
volunteers.

Changes to the .mesh and .mesh.nycmesh.net zone are managed in a zone file checked into the
nycmeshnet/nycmesh-dns repository. After changes to these files are reviewed, approved, and
merged by specific NYC Mesh volunteers, the DNS servers periodically update the DNS records via
"git pull" operations from the servers themselves.

Technical Summary

Deployment

Anycast DNS and IPs

https://wiki.nycmesh.net/books/5-networking/chapter/ospf
https://www.knot-dns.cz/
https://www.knot-resolver.cz/
https://frrouting.org/
https://github.com/nycmeshnet/nycmesh-dns/blob/master/.github/workflows/deploy.yaml
https://github.com/nycmeshnet/nycmesh-dns/tree/master/infra/terraform
https://github.com/nycmeshnet/nycmesh-dns/tree/master/infra/ansible
https://www.proxmox.com/en/
https://www.debian.org/
https://en.wikipedia.org/wiki/Infrastructure_as_code
https://github.com/nycmeshnet/nycmesh-dns
https://github.com/nycmeshnet/nycmesh-dns/blob/master/mesh.zone
https://github.com/nycmeshnet/nycmesh-dns

10.10.10.10 - Primary recursive resolver within the mesh
10.10.10.11 - Secondary recursive resolver within the mesh

The reason for two IPs rather than one is for redundancy, resiliency, and load balancing. While the
servers at both IPs are designed and configured to be able to handle the full traffic from the mesh,
splitting the load through multiple servers reduces the risk of service interruptions and allows
clients to fail-over between IPs.

The DNS servers are commonly made available through a "trick" called Anycast. With anycast,
many DNS servers all present the same virtual IP. They announce this IP in the routing table (OSPF
within the mesh routing table). With this, the clients believe they all have a very short route to the
same network, but in fact it is a copy of the same service running many times with the same
configuration. Any of the services may answer the request equally well. Reply packets are sent via
the normal means.

Within NYC Mesh, this means that a member in Harlem sends a queries to 10.10.10.10, OSPF is
used to route the packets to SN11, while the same requests made in Park Slope are routed to SN3.
In each case, OSPF picks the shortest available route. Also note that if the server at SN3 is taken
down for maintenance (and is removed from the routing table), queries will be sent to the closest
available server at another Super Node.

Recursive Resolver IPs

Anycast

Revision #2
Created 1 November 2024 01:39:36 by James
Updated 1 November 2024 04:13:24 by James

https://en.wikipedia.org/wiki/Anycast#Domain_Name_System

