
MeshDB is an under-development software application with the goal of replacing the New Node Responses 

Google Sheet (the spreadsheet) as the source of truth for NYCMesh member, install, geolocation, device, 

and connection information via a proper SQL database. It is built in the Django ORM, using Python Model 

objects to represent underlying database schema structures. The schema used for development up to this 
point is unable to faithfully represent some edge cases that occur at atypical NYC mesh sites. In this 
document, we propose a modified schema and explain each edge case, detailing how the edge case will be 
represented under the proposed schema

The following diagram depicts the proposed schema, showing the relationships between models (SQL 
tables), and some key attributes of each model. For clarity, non-essential attributes are omitted (see 
appendix A for a comprehensive diagram).

MeshDB Schema Design
Background

The Schema (Simplified)

https://github.com/WillNilges/meshdb
https://docs.google.com/spreadsheets/d/1bczvQFhQ5N2VjTLx1-QA361YkyJrsZ3F7mg0eI9BZWk/edit?pli=1#gid=1169641803
https://docs.google.com/spreadsheets/d/1bczvQFhQ5N2VjTLx1-QA361YkyJrsZ3F7mg0eI9BZWk/edit?pli=1#gid=1169641803
https://docs.djangoproject.com/en/5.0/topics/db/models/


Image not found or type unknown

We propose the following models:

1. Member - Represents a single NYC Mesh Member (even if they have moved between multiple 

addresses and therefore have multiple installs or "own" multiple active installs ). Tracks their 
name, email address, and other contact details

2. Install - Represents the deployment (or potential deployment) of NYC Mesh connectivity to a 

single household. This most closely maps to the concept of a row in the spreadsheet. Tracks the 
unit number of the household, which member lives there, which building the unit is located within. 
It is keyed by install number, which corresponds to row number on the spreadsheet. With foreign 
keys to Member, Building, and Device, it acts as the central model, tying the entire schema 
together. Many objects have a status field, but the install status field maps most closely onto the 
status tracked in the spreadsheet today. Completed Installs have a foreign key to the device field 
(via_device) which keeps track of the device they use to connect to the mesh

3. Building - Represents a location in NYC identified by a single street address (house number and 

street name). In the case of large physical structures with more than one street address, we will 
store one Building object for each address that we have received Install requests for. Buildings 
track a primary network number, to represent the way the site is referred to colloquially. In the 
case that a building has more than one network number, the primary network number will be set to 
the one volunteers designate as the “primary” (usually the first assigned, busiest router, etc.)

4. Device - Represents a networking device (router, AP, P2P antenna, etc.). Most closely 

corresponds to a “dot” on the map. Not comprehensive of all devices on the mesh, only those that 

need a map dot. For big hub sites, this may be only the core router. Contains a mandatory field for 
“network number” (NN) which will be set to the NN of the device, or of the “first hop” router used 
by this device (for devices like APs which have no NN assigned). It contains optional lat/lon 
override fields, which can be used to refine the exact location of this device (e.g. for map display). 
When no lat/lon are provided for a device, is it assumed to reside at the lat/lon of the building it is 

https://www.nycmesh.net/map/


associated with (via the Install model). Devices can optionally track which install delivers them 

power, via a powered_by_install foreign key to the Install model, which tells us which unit has the 

PoE injector.

1. Sector - A special type of device (using Django Model Inheritance to inherit all fields from 

device) which adds additional fields related to the display of sector coverage information on 
the map (azimuth, width, and radius)  

5. Link - A connection between devices, which represents a cable or wireless link, whether directly 

between the devices or via other antennas not represented with their own device objects

Image not found or type unknown

In this simple example, we have two tenants in a single building with a single address, both connected via 
cables directly to an omni on their shared roof. They are connected to the rest of the mesh via an LBE to 
Saratoga. The database tables for this scenario look like this:

Installs

Install Number Via Device Building

13134 1 1

13276 1 1

Buildings

ID Primary NN Address BIN

1 492 216 Schaefer Street 3079532

Devices

Example 1 - NN492 - Typical Multi-Tenant Install

https://docs.djangoproject.com/en/5.0/topics/db/models/#model-inheritance


ID Network Number lat/lon overrides

1 492 -

Links

ID From Device To Device

1 1 <saratoga device id>

Image not found or type unknown

In this example, members in 3 adjacent buildings, each with their own address, are connected via a single 
omni, with cable runs across the roofs directly to the member’s apartments. They are connected to the rest 
of the mesh via an mant 802.11 sector at 4507. The database tables for this scenario look like this:

Installs

Install Number Via Device Building

4734 2 2

6972 2 3

13663 2 4

Example 2 - NN 4734 - Cross-Building Installs



Buildings

ID Primary NN Address BIN

2 4734 31 Clarkson Ave 3115982

3 4734 25 Clarkson Ave 3115985

4 4734 27 Clarkson Ave 3115984

Devices

ID Network Number lat/lon overrides

2 4734 -

Links

ID From Device To Device

2 2 <4507 device id>

Image not found or type unknown

In this example, we have one regular tenant in a single building with a single address. However there is also 
a rooftop office with its own omni, connected wirelessly to the primary one. They are connected to the rest of 
the mesh via a GBELR to Grand. The database tables for this scenario look like this:

Installs

Install Number Via Device Building

731 3 5

12985 4 5

Example 3 - 7th Street (NN 731) - Multiple Omnis on one building



Buildings

ID Primary NN Address BIN

5 731 190 East 7th Street 1086499

Devices

ID Network Number lat/lon overrides

3 731 -

4 311 x, y

Links

ID From Device To Device

3 3 4

4 3 <1932 device id>

Example 4 - Vernon (NN 5916) - Courtyard APs



Image not found or type unknown

In this example, we have a core hub site in a single building with a single address. However, there are many 
Access Points (APs) on light poles in the building’s courtyard. These light-poles are unquestionably 
associated with the same building/address as the core router of this hub, but need to be shown separately 
on the map. 

In this scenario, we treat the light poles as if they are “apartments” in the Vernon building. They each get 
their own install #, but imagining a tenant living in the light pole, we say that this imaginary install is 
“connected via” a device object representing the AP. The network number for these APs is set to 5916, 
reflecting their first hop router (and the fact they are not themselves assigned NNs). Links between the 
courtyard APs and the core router are included so that they are rendered on the map  



The database tables for this scenario look like this:

Installs

Install Number Via Device Building

5916 5 6

6345 - 6

11875 6 6

11876 7 6

11877 8 6

11878 9 6

11879 10 6

11880 11 6

Buildings

ID Primary NN Address BIN

6 5916 303 Vernon Avenue 3042881

Devices

ID Network Number lat/lon overrides

5 5916 -

6 5916 x, y

7 5916 x, y

8 5916 x, y

9 5916 x, y

10 5916 x, y

11 5916 x, y

Links

ID From Device To Device

5 5 <SN3 device id>

6 5 <grand device id>

7 8 9

8 8 6

9 6 5

Example 5 - Prospect Heights (NN 3461) - Multiple NNs for one building



Image not found or type unknown

In this example, we have a core hub site in a single building with a single address. The primary NN 3461, 
also serves a member’s apartment as install #3461. However, there is another apartment which could not 
due to practical considerations be connected via a cable, and had to be connected via an antenna in their 
window to a sector on the roof. This antenna needed an NN for configen and naming, and so this building 
received multiple NNs.

The database tables for this scenario look like this:
 

Installs

Install Number Via Device Building

3461 3461 7

3921 - 7

6723 - 7

11024 377 7

14399 - 7

14960 - 7



Buildings

ID Primary NN Address BIN

7 3461 135 Eastern Parkway 3029628

Devices

ID Network Number lat/lon overrides

12 3461 -

13 377 x, y

Links

ID From Device To Device

10 12 <SN3 device id>

11 13 12

Image not found or type unknown

Example 6 - Jefferson (NN 3606) - Multiple NNs for multiple buildings



In this example, we have a building with 4 addresses and 3 omnis on the roof, each with its own network 
number. There is no clean mapping between NNs and addresses, since each omni serves installs in 
multiple buildings. The omni of the primary NN, 3606, provides the uplink to Hex House (NN 1417). 

The database tables for this scenario look like this:

Installs (omitting abandoned & potential for brevity)

Install Number Via Device Building

3606 14 8

5933 15 8

7177 15 8

8152 16 8

8274 14 9

8085 16 11

Buildings

ID Primary NN Address BIN

8 3606 476 Jefferson Street 3819572

9 3606 488 Jefferson Street 3819572

10 3606 28 Scott Avenue 3819572

11 3606 16 Cypress Avenue 3819572

Devices

ID Network Number lat/lon overrides

14 3606 x, y

15 5933 x, y

16 169 x, y

Links

ID From Device To Device

12 14 <1417 device id>

13 14 15

14 15 16

15 16 14

The following is a complete schema diagram, showing all fields. New additions from the current 
implementation are shown in yellow, and removed fields are shown in red

Appendix A - Full Schema Diagram



Image not found or type unknown

Revision #8
Created 23 February 2024 03:55:10 by Andrew Dickinson
Updated 29 February 2024 06:53:21 by Olivier


